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Review

Purpose: Approximating a terrain by constructing a polyhedral
terrain from a set P of sample points.
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Theorem 9.1:

Let P ={p1,p2,...,pn} be a point set. A triangulation of P is a
maximal planar subdivision with vertex set P.

w triangles=2n-2 -k
iw edges=3n-3-k
where k is the number of points in P on the convex hull of P

Theorem 9.2:(Thales Theorem)

Let C be a circle,L a line intersecting C' in points a and b, and
p,q,r and s points lying on the same side of L.Suppose that p
and g lie on C, that r lies inside C,and that s lies outside C.Then

zarb> 2abq = 2aqgb > zasb
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Observation 9.3:

Let T be a triangulation with an illegal edge e.Let T’ be the
triangulation obtained from 7' by flipping e.Then

A(T') > A(T)
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Definition:

A legal triangulation is a triangulation that does not contain any
illegal edge.
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Observation 9.3:

Let T be a triangulation with an illegal edge e.Let T’ be the
triangulation obtained from 7' by flipping e.Then

A(T') > A(T)

Definition:

A legal triangulation is a triangulation that does not contain any
illegal edge.

Any angle-optimal triangulation is legal.
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Lemma 9.4:
Let edge p;p; be incident to triangles p;p;p, and p;p;p; and let
C be the circle through p;,p; and py. The edge p;p; is illegal if
and only if the point p; lies in the interior of C.
i if the points p;,p;.pk,pr from a convex quadrilateral and do
not lie on a common circle = exactly one of p;p; and pxp;
is an illegal edge.
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Algorithm LEGALTRIANGULATION(T)
Input. A triangulation T of a point set P.
Output. A legal triangulation of P.

1. while T contains an illegal edge pip;

2. do (x Flip pip; *)

3. Let pipjpx and pipjp; be the two triangles adjacent
to Pip;.

4. Remove pipj from T, and add pgp; instead.

5  return T
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@ A set P of n points in the plane

@ The Voronoi diagram Vor(P) is
the subdivision of the plane into
Voronoi cells V (p) for all p eP

© Let G be the dual graph of
Vor(P)

© The Delaunay graph DG(P) is
the straight line embedding of G.
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The Delaunay graph of a planar point set is a plane graph.

The edge p;p; is in the Delaunay graph Dg(P) <=thereis a
C;j whit p; and p; on its boundary and no other site of P
contained in it.

The center of such a disc lies on the common edge of V' (p;)
and V (p;).

= |f the point set P is in general position then the Delaunay
graph is a triangulation.
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Theorem 9.6:

Let P be a set of points in the plane,

@ Three points p;,p;,pi; €P are vertices of the same face of
the Delaunay graph of P < the circle through p;,p;,px
contains no point of P in its interior.

@ Two points p;,p; ePform an edge of the Delaunay graph of
P < there is a closed disc C that contains p; and p; on
its boundary and does not contain any other point of P.

Theorem 9.7:

T is a Delaunay triangulation of P < the circumcircle of any
triangle of 7' does not contain a point of P in its interior.
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Voronoi
Delaunay

Empty sphere
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Theorem 9.8:

Let P be a set of points in the plane.A triangulation T of P is
legal < T is a Delaunay triangulation P.

Theorem 9.9:

Let P be a set of points in the plane.Any angle-optimal
triangulation of P is a Delaunay triangulation P.
Furthermore,any Delaunay triangulation of P maximizes the
minimum angle over all triangulations of P.
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@ A Delaunay triangulation for a set P of points in a plane is a
triangulation DT'(P) such that no point in P is inside the
circumcircle of any triangle in DT'(P).
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@ Delaunay triangulations maximize the minimum angle of all
the angles of the triangles in the triangulation; they tend to
avoid skinny triangles.
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The Delaunay Triangulation

@ Delaunay triangulations maximize the minimum angle of all
the angles of the triangles in the triangulation; they tend to
avoid skinny triangles.

@ For a set of points on the same line there is no Delaunay
triangulation (the notion of triangulation is degenerate for
this case)

@ For four or more points on the same circle (e.g., the
vertices of a rectangle) the Delaunay triangulation is not
unique

@ By considering circumscribed spheres, the notion of
Delaunay triangulation extends to three and higher
dimensions
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@ The triangulation is named after Boris Delaunay for his
work on this topic from 1934. }
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@ The voronoi diagram is named after Georgy F. Voronoi for
his work on this topic. }
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Computing the Delaunay Triangulation

Delaunay triangulations help in constructing various things:
@ Euclidean Minimum Spanning Trees

@ Approximations to the Euclidean Traveling Salesperson
Problem
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Reconstruction
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Meshing / Remeshing
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Methods

There are several ways to compute the Delaunay triangulation:
@ By plane sweep
@ By iterative flipping from any triangulation
@ By conversion from the Voronoi diagram
@ By randomized incremental approach
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There are several ways to compute the Delaunay triangulation:
@ By plane sweep
@ By iterative flipping from any triangulation
@ By conversion from the Voronoi diagram
@ By randomized incremental approach ./

23/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

PO

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

o P-1
PO

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

P2

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

P2

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

P2

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52




Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation esmfsitan i o et
Algorithm
Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52




Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52




Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage
. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

o Pl

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

PO

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

PO

24/52



Usage

. . . Methods
Computing the Delaunay Triangulation el 6 e (e Gies

Algorithm

Point location structure

Randomized incremental approach

PO

24/52



Usage

Methods

Description of the fourth method
Algorithm

Point location structure

Computing the Delaunay Triangulation

Pseudocode

Algorithm DELAUNAYTRIANGULATION(P)
Input. A set P of n+ 1 points in the plane.
Output. A Delaunay triangulation of P.

ad

oo

bl

11.

12

=

Let pg be the lexicographically highest point of P, that is, the rightmost among the points
with largest y-coordinate.
Let p_; and p_5 be two points in R? sufficiently far away and such that P is contained in
the triangle pop_1p_a.
Initialize T as the triangulation consisting of the single triangle pop_;p_».
Compute a random permutation py, p2,..., pnof P\ {po}.
forr—1lton
do (= Insert p, into T: )
Find a triangle p;p ;i € T containing p,.
if p, lies in the interior of the triangle p;p;py
then Add edges from p, to the three vertices of p;p;py. thereby splitting p;pjpi
into three triangles.
LEGALIZEEDGE(p,, pip;,T)
LEGALIZEEDGE(p,, P;Pr, T)

LEGALIZEEDGE(p,. Py pi. T)
25/52
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forr—1lton
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Randomized incremental approach

pr lies in the interior of a triangle pr falls on an edge

Pi
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Computing the Delaunay Triangulation

Pseudocode

Usage

Methods

Description of the fourth method
Algorithm

Point location structure

13. else (+ p, lies on an edge of p;p;py. say the edge p;p; *)
14. Add edges from p, to p; and to the third vertex p; of the other triangle that

15.
lo.
17.
18.

is incident to p;pj, thereby splitting the two triangles incident to p;p; into
four triangles.

LEGALIZEEDGE(p,, Pip;. T)

LEGALIZEEDGE(p,, pip;,T)

LEGALIZEEDGE(p,, p;pk.T)

LEGALIZEEDGE(p,, Prpi. T)

19. Discard p_; and p_» with all their incident edges from T.

20. returnT

27/52
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Computing the Delaunay Triangulation

LEGALIZEEDGE(p,, p;p;.7)
1. (+ The point being inserted is p,, and p;pj is the edge of T that may need to be flipped. *)
2. ifpipjisillegal
3 then Let p;p;p; be the triangle adjacent to p,p;p; along pip;.
(+ Flip pipj: *) Replace p;p; with p,py.
LEGALIZEEDGE(p,, Pipk,T)
LEGALIZEEDGE(p,, prp;.T)

Al
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Computing the Delaunay Triangulation

But

what about the correctness of algorithm?
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@ We see that every new edge added is incident to P, .
@ We will see that every new edge added is in fact legal.

@ Together with the fact that an edge can only become illegal
if one of its incident triangles changes,then our algorithm
tests any edge that may become illegal.
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Must show no illegal edge left behind!

@ We see that every new edge added is incident to P, .
@ We will see that every new edge added is in fact legal.

@ Together with the fact that an edge can only become illegal
if one of its incident triangles changes,then our algorithm
tests any edge that may become illegal.

The algorithm is correct
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Lemma 9.10:

Every new edge created in 'DELAUNAYTRIANGULATION’ or in
'LEGALIZEEDGE’ during the insertion of P, is an edge of the

Delaunay graph of {p—lvp—27p0a "'7p1”}
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Computing the Delaunay Triangulation

introduction DAG

# A point location structure D is a directed acyclic graph. J

@ The leaves of D correspond to the triangles of the current
triangulation T
exist cross-pointers between those leaves and the
triangulation.

@ The internal nodes of D correspond to triangles that have
already been destroyed
Any internal node gets at most three outgoing pointers.
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Description of the fourth method
Algorithm

Point location structure

Computing the Delaunay Triangulation

Point location

@ Start at the root of D,

@ Check the three children of the root and descend to the
corresponding child,

@ check the children of this node,descend to a child whose
triangle contains p,,

© until we reach a leaf of D,this leaf corresponding to a
triangle in the current triangulation that contains p,.
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How to choose p_1 andp_o?
and

How to implement the test of whether an edge is legal?
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Description of the fourth method
Algorithm

Point location structure

Computing the Delaunay Triangulation

The first issue

Position of a point p; with respect to the oriented line from p; to
Dk-
@ p; lies to the left of the line from p; to p_1;
@ p; lies to the left of the line from p_; to p;;
@ p; is lexicographically larger than p;.
By our choice of p_; and p_», the above conditions are
equivalent.
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Usage
. . . Methods
Computing the Delaunay Triangulation Description of the fourth method
Algorithm
Point location structure

The second issue

Let p;p; be the edge of to be tested,and let p;, and p; be the
other vertices of the triangles incident to p;p; (if they exist).
@ p;p; is an edge of the triangle pop_1p-2. These edges are
always legal.
@ The indices i,j,k,| are all non-negative.<— this case is
normal
@ All other cases p;p; is legal if and only if min(k,l) < min(z,j)
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The Analysis

Lemma 9.11:

The expected number of triangles created by the algorithm is at
most 9n + 1.

Proof.

P, = {p1,p2, -, r} Dg, = Dg({p-2,p-1,po}uP;)

@ f(new triangles in step 7)<
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The expected number of triangles created by the algorithm is at
most 9n + 1.

Proof.

P, = {p1,p2, -, r} Dg, = Dg({p-2,p-1,po}uP;)

@ j(new triangles in step r)< 2k - 3 k=deg(p,,Dg,)
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degree of p,., over all possible permutations of the set P?
w Backwards analysis:

@ By Theorem 7.3:  Edges in Dg, < 3(r + 3) - 6

@ Total degree of the vertices in P, < 2[3(r + 3) - 9] = 6r

@ The expected degree of a random point of P, < 6

@ we can bound the number of triangles created in step r:
E[f (asin step r)]< E [2deg(py, Dyg,.) - 3]

= 2FE[deg(p,, Dg,)] - 3
<2x6-3=9

Total number of As is at most 9n + 1
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The Analysis

Lemma 9.12;

The Delaunay triangulation can be computed in O(nlogn)
expected time, using O(n) expected storage.

Proof.

@ Space follows from nodes in D representing triangles
created, which by the previous lemma is O(n).
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The Analysis

Lemma 9.12;

The Delaunay triangulation can be computed in O(nlogn)
expected time, using O(n) expected storage.

Proof.
@ Space follows from nodes in D representing triangles
created, which by the previous lemma is O(n).
@ Not counting the time for point location,
@ the creation of each triangle takes O(1) time,

@ so the total time will be O(n) + time for point locations (on
expectation).
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@ Let K(A) c P be the points inside the circumcircle of a
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@ Therefore the total time for the point location steps is:
O(n + Y, card(K(2)))
A

@ Y card(K(2))=0(nlogn)?
A
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Proof.

@ P isin general position,then every subset P, is in general
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Lemma 9.13:

If P is a point set in general position,then

> card(K(2))= O(nlogn)

Proof.
@ P isin general position,then every subset P, is in general
position
@ triangulation after insert p, is the unique triangulation Dg,
@ T,:=the set of As of Dy,

@ T,\ T,_1 = the set of Delaunay As created in stage r.
(by difinition)
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The Analysis

o fix P., so k(P.,q,p,) depends only on p,
@ Probability that p,. is incident to a triangle is 3/r
@ Thus:

E [K(Pr.q.p,)] < 202

T

@ Using:

Y card(K(A)= ¥ K(Prq,pr)
ANeT T, 1 qeP\P,
@ We can rewrite our sum as:

El ¥ card(K(2)]<? ¥ k(Pg)
ANeTNT_q qe P\ P,
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@ We have:
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The Analysis

@ Any of the remaining n-r points is equally likely to appear
as pri1
@ So:

E[ k(Pr,prs1)] = L > k(Prq)

n—-r

qeP\P,.
@ By substitute this into:

E[ ¥ card(E(2)]<? ¥ Kk(Pq)

AT \Tyr_1 qeP\P,
@ We have:
El % card(K(a)] <3(2 ) BIE(P pro)l
ANETNTy_1

@ But what is k(P,,p,+1)?
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The Analysis

o k(PrspT-i-l)l
@ number of triangles of T,. that contain p,.,1

@ These are the triangles that will be destroyed when p,..; is
inserted.

@ Rewrite our sum as:
E[ % card(K(2))]< 3(” L )E[card(TT\THl)]

"
AT NTy_q
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° T,has2(m+3)-2-3=2m + 1
@ T,,.1 has two triangles more than T,
@ Thus, card(T,\T;,1)

< card(triangles destroyed by p,.1)

= card(triangles created by p,,1)-2

=card(T,1\T;) - 2
@ We can rewrite our sum as:

E[ Y card(Kk(2))]< 3(”7‘1 )(E[card(THl\Tr)] - 2)

AT NTy_q
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@ Therefore:
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The Analysis

@ Remember we fixed P, earlier
@ Consider all P, by averaging over both sides of the
inequality, but the inequality comes out identical.
@ E[j of triangles created by p,]
= L[ of edges incident to p,.1 in 7;.1]< 6
@ Therefore:
Bl 3 card(K(a)]<12(=1)

AeT NT_1
@ If we sum this over all r, we have shown that:
¥ card(K(2))= O(nlogn)
A

And thus, the algorithm runs in O(nlogn) time.
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Conclusion

polyhedral terrain made! ©
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